Max 发表于 昨天 19:35

为何液压工程师需要懂微积分?

<div class="ce-block ce-block--focused" data-id="A8reApdzAV" >
    <div class="ce-block__content">
      <div class="cdx-block image-tool image-tool--filled   ">
            <div class="image-tool__image">
                <div class="image-tool__image-preloader" style=""></div>
                <img id="aimg_A8reApdzAV" class="image-tool__image-picture _zoom" src="https://www.chydraulic.com/data/attachment/forum/202601/29/193537yt3ucx3z2cc1b1mc.jpeg" title="&nbsp; 为何液压工程师需要懂微积分?&nbsp;&nbsp;" alt="&nbsp; 为何液压工程师需要懂微积分?&nbsp;&nbsp;" data-aid="4"/>
            </div>
            <div class="cdx-input image-tool__caption" data-placeholder="&nbsp; 为何液压工程师需要懂微积分?&nbsp;&nbsp;">&nbsp; 为何液压工程师需要懂微积分?&nbsp;&nbsp;</div>
      </div>
    </div>
</div><div class="ce-block ce-block--focused" data-id="0XUed1tL-A" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">一、导言:为何液压工程师需要懂微积分?</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="Yo_wU98NvE" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">现代液压运动控制早已超越了简单的“启动-停止”或“行程末端触发”的“bang-bang”控制模式。它已经演变为一个复杂的、集成的自动化系统,其核心是对力、速度和位置的精确、稳定控制。为了实现这种控制,工程师必须能够理解和预测系统的动态行为——即系统变量(如位置、压力)如何随时间变化。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="_fn2k3G_ST" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">对微积分的恐惧或陌生是许多工程师深入理解系统动态的主要障碍。因此,本文章的目的不是将读者训练成数学家,而是培养一种“微积分直觉”。这种直觉能让工程师在看到一個液压缸时,不仅能想到它的力和速度,更能本能地意识到它的位移是流量的“累积”,而它的加速度是速度的“变化率”。这种思维模式是设计、调试和诊断高级运动控制系统的关键。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="5SKyHR6QC4" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">二、微积分的核心:两种互逆的运算</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="atPuE-0G8j" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">微积分大厦建立在两大支柱之上:微分 和 积分。它们是彼此的反向操作,正如加法和减法、乘法和除法一样。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="j63R83jsYc" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·一个生动的类比:想象一个储蓄账户。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="_L5NrHOxyf" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">o积分 就像你持续地存入小额存款。经过一段时间后,你查看账户总余额。这个总余额是所有存入操作的“累积”或“积分”结果。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="2nTecUp9tY" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">o微分 则像是银行经理查看你某一时刻的存款速率(比如每月存入多少钱)。他关注的是余额变化的“瞬时速率”,而不是总金额本身。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="scwOzLzSA8" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">在工程上,这种互逆关系无处不在。例如,如果你知道一个物体移动的路径(位置随时间变化),你可以通过微分求出它的速度,再微分一次求出它的加速度。反之,如果你知道它的加速度,你可以通过积分求出速度,再积分一次求出它走过的总路径。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="4a3wz22yqi" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">三、积分的深度解析:从“累加”到“记忆”</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="kjsX7tsY5X" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">1. 物理本质与几何意义</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="eOc_zDVhFo" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">积分在物理上的核心是 “累积”或“求和” 。在几何上,它可以被理解为计算一条曲线下的面积。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="BFuxzEFGFs" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·数学表达: 输出 = ∫ 输入 dt</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="v2XZ75U8rA" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·解读:输出量等于输入量随时间(t)的积分。这个积分符号 ∫ 可以想象为一个拉长的“S”,代表着“连续求和”(Summation)。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="aXFxhWyqLf" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">2. 典范示例:汽车里程表(Odometer)</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="4o8tBZPb0D" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">我们深入剖析:</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="hUeOoSq3eO" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·输入:汽车的瞬时速度(例如,60 mph, 然后变为 55 mph,不断变化)。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="T_42_xB780" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·操作:里程表内部机制(无论是机械还是电子)持续不断地将速度与微小的时间间隔相乘(速度 × 时间 = 微小距离),然后将所有这些微小距离累加起来。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="q9475wyo7-" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·输出:总行驶里程。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="NfDrTysy9a" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·关键洞察:</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="7dRQLqMc6o" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">1.时间的作用:总里程不仅取决于你开了多快,更取决于你开了多久。时间是积分过程中不可或缺的维度。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="JN2iJ2Pqly" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">2.连续过程:这不是一次性的加法,而是一个从旅程开始到结束都在进行的、不间断的累加过程。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="RsljpQVNui" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">3.“记忆”效应:里程表的读数永远不会自动归零。它“记住”了自上次复位以来所有输入(速度)历史的总和。这是积分器的一个根本属性。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="avlJkc0HU9" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">3. 液压系统中的核心积分器:液压缸</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="_B6DRyCI-w" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">将里程表的逻辑完美地平移到液压领域,我们就得到了液压缸的积分模型:</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="QR3j0Vmhxo" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·输入:流入液压缸无杆腔或有杆腔的流量(Q),单位是 in³/sec。流量代表了“油液分子的速度”。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="gdqAdkNj1t" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·操作:液压缸作为一个物理容器,累积这些流入的油液分子。流入的总体积(流量 × 时间)直接转化为活塞杆的位移。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="b1yw7I-5QO" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·输出:活塞杆的位置(X)。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="lmFr0QznVF" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·数学关系: 位置 (X) = ∫ 流量 (Q) dt</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="MvrZ2QMWJF" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·工程意义:这个简单的关系解释了运动控制中的一个基本事实——你无法瞬间改变位置。要到达一个目标位置,你必须向液压缸提供一段时间的流量。位置是流量在时间上的积分。这使得液压缸成为一个固有的、物理的积分器。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="SV80aUMGwA" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">4. 更多工程中的积分器例子</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="75iPmFv61-" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·蓄能器:</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="PnWfbwETbV" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">o输入:净流入蓄能器的流量。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="zcTjdQQjTb" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">o输出:蓄能器内的压力(通过气体压缩定律,流量累积为气体体积的变化,进而体现为压力变化)。在一定线性化假设下,压力∝∫流量 dt。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="9tFrgqRpWb" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·电容器:</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="Z7jmdQ71zf" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">o输入:流入电容器的电流。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="G3PefPWw7i" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">o输出:电容器两端的电压(通过电荷的累积)。电压 = (1/C) × ∫ 电流 dt。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="80Xm3QFWqY" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">5. 积分器的总结性特征</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="xskaEl6oNS" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·当输入为零时,输出保持不变。(车停了,里程不变;缸停油了,位置锁定)。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="rd_adLSZL7" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·当输入不为零时,输出必然在变化。(输出是输入的“历史总和”)。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="1SPy4aWkYg" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·具有“记忆”功能。 输出值承载了所有过去输入的信息。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="hwW_3B3xlN" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">四、微分的深度解析:捕捉“变化的瞬间”</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="pFQy9xmEtl" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">1. 物理本质与几何意义</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="8YM3IsWHTC" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">微分在物理上的核心是 “变化率” 。在几何上,它表示曲线在某一点的斜率或陡度。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="RbA26HnlIP" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·数学表达: 输出 = d(输入)/dt</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="VtP0RLafgj" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·解读:输出量等于输入量随时间(t)的微分。这个 d/dt 运算符可以理解为“...随时间的微小变化率”。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="utU9PZiri6" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">2. 典范示例:汽车速度表(Speedometer)</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="uOas0oacH5" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·输入:车辆的位置(随时间变化)。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="dOd76h_DpJ" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·操作:速度表(通过机械连接或电子传感器)计算在极短时间间隔内位置的微小变化量,并求出这个变化量与时间的比值(Δ位置 / Δ时间)。当这个时间间隔趋近于无限小时,就得到了瞬时速度。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="4RerJkbOPS" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·输出:瞬时速度。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="tzAH8kNAok" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·关键洞察:</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="s1s__L2QRx" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">1.关注瞬时状态:速度表不关心你已经开了多远,只关心此时此刻你移动得有多快。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="T8gkNI2FIr" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">2.对变化敏感:如果位置没有变化(车辆静止),斜率为零,速度就是零。位置变化得越快,斜率越大,速度读数就越高。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="krvYDmbG7V" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">3. 液压系统中的微分行为</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="RuqwSrVb_i" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">一个典型的液压微分例子发生在一个被外力驱动的液压缸上:</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="ne9ITklifl" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·场景:一个液压缸的两端油口被封闭,你试图用外力推动或拉动其活塞杆。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="9FSDm0sEOn" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·输入:活塞杆的位移(X)。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="0lMCxH1gxT" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·操作:当你移动活塞杆时,你改变了缸体内的容积。这个容积的变化率(d(体积)/dt)迫使油液通过微小的间隙或可压缩性产生流动。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="CH5QRrCrGH" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·输出:产生的瞬时流量(Q)。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="yyqQe3vY-j" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·数学关系: 流量 (Q) ∝ d(位移 (X))/dt</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="xPOzM9Xuo_" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·工程意义:这个例子说明了微分器只对变化着的输入信号产生响应。如果你保持活塞杆不动(dX/dt = 0),就没有流量输出。你移动得越猛烈(变化率越高),产生的瞬时流量就越大。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="xUVZcmUIT1" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">4. 微分器的总结性特征</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="ddbH8t3gin" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·输出与输入的变化率成正比,而非输入值本身。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="3OpbfiE8Vy" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·当输入恒定不变时,输出为零。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="pRqv_K2MWm" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">·能够敏锐地捕捉到输入信号的快速变化(高频成分),但也因此容易放大信号中的噪声。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="Bta7VoCB0n" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">五、微积分在运动控制中的闭环与应用</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="SUINUNHB2F" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">将这些概念串联起来,形成一个完整的运动控制视角。考虑一个最基本的电液位置伺服系统:</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="1NBDEx2Tya" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">1.命令路径:</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="rNSMinWBiZ" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">o控制器给出一个目标位置。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="Kt9L6vNP84" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">o实际位置通过传感器反馈回来,与目标位置比较,产生一个误差信号。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="tNUCGdkyTi" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">o控制器(如一个PID控制器)中的 I(积分)环节会对这个持续的误差进行积分。即使误差很小,只要它存在,积分输出就会不断累积,最终产生足够大的控制力去完全消除静态误差。这是积分“累积”特性的直接应用。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="kyqsNok_jv" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">2.物理执行路径:</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="nZaq7CcO-b" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">o控制器输出一个信号驱动伺服阀,阀控制流量进入液压缸。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="IKZugsRyln" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">o液压缸作为一个物理积分器,将流量(Q)转换为位置(X),即 X = ∫ Q dt。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="8z6CrlodzV" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">3.稳定性与响应性:</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="OzbQ0DFMsS" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">o控制器中的 D(微分)环节会对误差或位置信号进行微分,预测未来的变化趋势。如果系统开始过快地冲向目标点,微分信号会产生一个“制动”效应,抑制超调,提高稳定性。这是微分“变化率”特性的应用。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="p1yAASCP8x" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">一个精妙的洞见:输入和输出的定义决定了组件是积分器还是微分器。液压缸通常被视为积分器(流量输入,位置输出)。但如果我们强制其位置作为输入(例如被外部负载驱动),它就会表现出微分器的特性(产生流量输出)。这种视角的灵活性对于故障诊断和系统分析极具价值。例如,一个在负载作用下缓缓收缩的液压缸,正是在对作用在其上的力(通过压力转化为流量)进行积分,从而产生位移。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="VsAvcOZBNZ" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">六、总结:从静态思维到动态思维的飞跃</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="rEkM9ERUOa" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">本篇文章不止是一次数学复习。它是一次工程思维模式的训练。它成功地将微积分从教科书的公式中解放出来,并将其植入每一个液压工程师日常打交道的物理实体中——液压缸、蓄能器、速度、压力。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="IWBoc9vXOn" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">通过学习本文,工程师应能实现从静态的、基于状态的思维(“现在位置在哪里?”)到动态的、基于过程的思维(“位置是如何随时间变化的?是什么流量历史导致了现在这个位置?未来的速度趋势是怎样的?”)的转变。</div>
        </div>
</div><div class="ce-block ce-block--focused" data-id="FyQTjDqTVN" >
        <div class="ce-block__content">
                <div class="ce-paragraph cdx-block ce-paragraph--left">这种微积分直觉是理解系统频响、稳定性分析、控制器整定(如PID)、以及诊断诸如爬行、振荡、定位不准等动态问题的先决条件。它为后续深入学习传感器信号处理、电子放大器设计以及数字控制算法,奠定了无比坚实的概念基础。掌握了这些,工程师才真正拿到了开启现代高性能电液运动控制大门的钥匙。</div>
        </div>
</div><style type="text/css">
.ce-block {
    margin-bottom: 20px;
}
.ce-block__content,.ce-toolbar__content {
        /* max-width:calc(100% - 50px) */
        margin-left: auto;
    margin-right: auto;
}
.image-tool {
--bg-color: #cdd1e0;
--front-color: #388ae5;
--border-color: #e8e8eb;

}

.image-tool__image {
    border-radius: 3px;
    overflow: hidden;
    margin-bottom: 10px;
}

.image-tool__image-picture {
      max-width: 100%;
      vertical-align: bottom;
      display: block;
      margin-left: auto;
      margin-right: auto;
    }

.image-tool__image-preloader {
      width: 50px;
      height: 50px;
      border-radius: 50%;
      background-size: cover;
      margin: auto;
      position: relative;
      background-color: #cdd1e0;
      background-position: center center;
    }

.image-tool__image-preloader::after {
      content: "";
      position: absolute;
      z-index: 3;
      width: 60px;
      height: 60px;
      border-radius: 50%;
      border: 2px solid #cdd1e0;
      border-top-color: #388ae5;
      left: 50%;
      top: 50%;
      margin-top: -30px;
      margin-left: -30px;
      animation: image-preloader-spin 2s infinite linear;
      box-sizing: border-box;
      }

.image-tool__caption::before {
      position: absolute !important;
      content: attr(data-placeholder);
      color: #707684;
      font-weight: normal;
      display: none;
    }

.image-tool__caption:empty::before {
      display: block;
      }

.image-tool__caption:empty:focus::before {
      display: none;
      }

.image-tool--empty .image-tool__image {
      display: none;
    }

.image-tool--empty .image-tool__caption, .image-tool--loading .image-tool__caption {
      display: none;
    }

.image-tool .cdx-button {
    display: flex;
    align-items: center;
    justify-content: center;
}

.image-tool .cdx-button svg {
      height: auto;
      margin: 0 6px 0 0;
    }

.image-tool--filled .cdx-button {
      display: none;
    }

.image-tool--filled .image-tool__image-preloader {
      display: none;
      }

.image-tool--loading .image-tool__image {
      min-height: 200px;
      display: flex;
      border: 1px solid #e8e8eb;
      background-color: #fff;
    }

.image-tool--loading .image-tool__image-picture {
      display: none;
      }

.image-tool--loading .cdx-button {
      display: none;
    }

/**
   * Tunes
   * ----------------
   */

.image-tool--withBorder .image-tool__image {
      border: 1px solid #e8e8eb;
    }

.image-tool--withBackground .image-tool__image {
      padding: 15px;
      background: #cdd1e0;
    }

.image-tool--withBackground .image-tool__image-picture {
      max-width: 60%;
      margin: 0 auto;
      }

.image-tool--stretched .image-tool__image-picture {
      width: 100%;
      }

.image-tool__caption {
                text-align: center;
                font-size: 14px;
                color: #a3a3a3;
        }
@keyframes image-preloader-spin {
0% {
    transform: rotate(0deg);
}
100% {
    transform: rotate(360deg);
}
}
</style><style type="text/css">
.ce-block {
    margin-bottom: 20px;
}
.ce-block__content,.ce-toolbar__content {
        /* max-width:calc(100% - 50px) */
        margin-left: auto;
    margin-right: auto;
}
.ce-paragraph {
    line-height: 1.6em;
    outline: none;
    text-indent: 2em;
    font-size: 16px;
}
.ce-paragraph--right {
    text-align: right;
}
.ce-paragraph--center {
    text-align: center;
}
.ce-paragraph--left {
    text-align: left;
}

.ce-paragraph--justify {
    text-align: justify;
}

.ce-paragraph-text-indent {
    text-align: justify;
}
.ce-paragraph:empty::before{
content: attr(data-placeholder);
color: #707684;
font-weight: normal;
opacity: 0;
}

/** Show placeholder at the first paragraph if Editor is empty */
.codex-editor--empty .ce-block:first-child .ce-paragraph:empty::before {
opacity: 1;
}

.codex-editor--toolbox-opened .ce-block:first-child .ce-paragraph:empty::before,
.codex-editor--empty .ce-block:first-child .ce-paragraph:empty:focus::before {
opacity: 0;
}

.ce-paragraph p:first-of-type{
    margin-top: 0;
}

.ce-paragraph p:last-of-type{
    margin-bottom: 0;
}


.svg-icon {
    width: 1em;
    height: 1em;
}

.svg-icon path,
.svg-icon polygon,
.svg-icon rect {
    fill: #4691f6;
}

.svg-icon circle {
    stroke: #4691f6;
    stroke-width: 1;
}
</style><style type="text/css">
.inline-code {
background: rgba(250, 239, 240, 0.78);
color: #b44437;
padding: 3px 4px;
border-radius: 5px;
margin: 0 1px;
font-family: inherit;
font-size: 0.86em;
font-weight: 500;
letter-spacing: 0.3px;
}
</style>
页: [1]
查看完整版本: 为何液压工程师需要懂微积分?